Publications
Development of IMT therapeutic material: methods and validation
Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A.
Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection.
The American Journal of Gastroenterology. 2012;107(5):761-7. doi: 10.1038/ajg.2011.482. Epub 2012 Jan 31.
Clostridium difficile infection: clinical applications and case studies
Khoruts A, Staley C, and Sadowsky MJ.
Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology.
Nat Rev Gastroenterol Hepatol. 2021;18:67-80. doi: 10.1038/s41575-020-0350-4. (link to abstract only)
Staley C, Halaweish H, Graiziger C, et al.
Lower endoscopic delivery of freeze-dried intestinal microbiota results in more rapid and efficient engraftment than oral administration.
Sci Rep. 2021 Feb 25;11(1):4519. doi: 10.1038/s41598-021-84152-6.
Staley C, Hamilton MJ, Vaughn BP, et al.
Successful resolution of recurrent Clostridium difficile infection using freeze-dried, encapsulated fecal microbiota; pragmatic cohort study.
The American Journal of Gastroenterology. 2017;112(6):940–947. doi: 10.1038/ajg.2017.6
Staley C, Khoruts A, Sadowsky MJ.
Contemporary applications of fecal microbiota transplantation to treat intestinal diseases in humans.
Archives of Medical Research. 2017;48(8):766-773. doi: 10.1016/j.arcmed.2017.11.006. Review. (link to abstract only)
Kelly CR, Khoruts A, Staley C, et al.
Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection.
Annals of Internal Medicine. 2016;165(9):609-616. doi: 10.7326/M16-0271
Khoruts A, Weingarden AR.
Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology.
Immunology Letters. 2014;162(2):77-81. doi: 10.1016/j.imlet.2014.07.016. Review.
Kelly CR, Ihunnah C, Fischer M, et al.
Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients.
The American Journal of Gastroenterology. 2014;109(7):1065-71. doi: 10.1038/ajg.2014.133. Epub 2014 Jun 3.
Khoruts, A.
Faecal microbiota transplantation in 2013: developing human gut microbiota as a class of therapeutics.
Nature Reviews Gastroenterology & Hepatology. 2014;11(2):79-80. doi: 10.1038/nrgastro.2013.231. Epub 2013 Dec 3. Review.
Borody TJ, Khoruts A.
Fecal microbiota transplantation and emerging applications.
Nature Reviews Gastroenterology & Hepatology. 2012;9(2):88-96. doi: 10.1038/nrgastro.2011.244. Review.
Bakken JS, Borody T, Brandt LJ, et al.
Treating Clostridium difficile infection with fecal microbiota transplantation.
Clinical Gastroenterology and Hepatology. 2011;9(12):1044-9. doi: 10.1016/j.cgh.2011.08.014. Epub 2011 Aug 24. Review.
Khoruts A, Sadowsky MJ.
Therapeutic transplantation of the distal gut microbiota.
Mucosal Immunology. 2011;4(1):4-7. doi: 10.1038/mi.2010.79. Epub 2010 Dec 8.
Emerging clinical applications (IBD, cancer, autism, metabolic syndrome, diet implications, etc.)
Teigen L, Mathai PP, Matson M, et al.
Methanogen abundance thresholds capable of differentiating in vitro methane production in human stool samples.
Digestive Diseases and Sciences. 2020. doi: 10.1007/s10620-020-06721-5 (link to abstract only)
Rashidi A, Kaiser T, Graiziger C, et al.
Specific gut microbiota changes heralding bloodstream infection and neutropenic fever during intensive chemotherapy.
Leukemia. 2020;34(1):312-316. doi: 10.1038/s41375-019-0547-0 (no open access link available)
Bajaj JS, Khoruts A.
Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis.
Journal of Hepatology. 2020;72(5):P1003-1027. doi: 10.1016/j.jhep.2020.01.017
A pilot study of fecal bile acid and microbiota profiles in inflammatory bowel disease and primary sclerosing cholangitis.
Clinical and Experimental Gastroenterology. 2019;12:9-19. doi: 10.2147/CEG.S186097
Microbiota transplant therapy and autism: lessons for the clinic.
Expert Review of Gastroenterology & Hepatology. 2019;13(11):1033-1037. doi: 10.1080/17474124.2019.1687293 (link to abstract only)
Can intestinal microbiota and circulating microbial products contribute to pulmonary arterial hypertension?
American Journal of Physiology: Heart and Circulatory Physiology. 2019;317(5):H1093-H1101. doi: 10.1152/ajpheart.00416.2019 (link to abstract only)
Dietary factors in sulfur metabolism and pathogenesis of ulcerative colitis.
Nutrients. 2019;11(4):931. doi: 10.3390/nu11040931
Fecal microbiota transplantation: current status in treatment of GI and liver disease.
Clinical Gastroenterology and Hepatology. 2019;17(2):353-361. doi: 10.1016/j.cgh.2018.07.026 (link to abstract only)
Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study.
Microbiome. 2017;5(10). doi: 10.1186/s40168-016-0225-7
Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease.
Microbiome. 2017;5(55). doi: 10.1186/s40168-017-0269-3
Newman KM, Rank KM, Vaughn BP, Khoruts A.
Treatment of recurrent Clostridium difficile infection using fecal microbiota transplantation in patients with inflammatory bowel disease.
Gut Microbes. 2017;8(3): 303–309. doi: 10.1016/s0016-5085(17)31409-9
Khoruts A, Rank KM, Newman KM, et al.
Inflammatory bowel disease affects the outcome of fecal microbiota transplantation for recurrent Clostridium difficile infection.
Clinical Gastroenterology and Hepatology. 2016;14(10):1433-1438. doi: 10.1016/j.cgh.2016.02.018
Thought leadership: contributions to the evolution of microbial restorative therapies
Khoruts A.
Can FMT Cause or Prevent CRC? Maybe, But There Is More to Consider.
Gastroenterology. 2021; ISSN 0016-5085. doi: 10.1053/j.gastro.2021.06.074.
Britton RA, Hoffmann DE, Khoruts A.
Probiotics and the Microbiome-How Can We Help Patients Make Sense of Probiotics?
Gastroenterology. 2021;160(2):614-623. doi: 10.1053/j.gastro.2020.11.047. (link to abstract only)
Khoruts A, Brandt LJ.
Fecal microbiota transplant: a rose by any other name.
The American Journal of Gastroenterology. 2019;114(7):1176. doi: 10.14309/ajg.0000000000000286
Khoruts A, Hoffmann DE, Palumbo FB.
The impact of regulatory policies on the future of fecal microbiota transplantation.
The Journal of Law, Medicine & Ethics. 2019;47(4):482-504. doi: 10.1177/1073110519897726 (link to abstract only)
Petrof EO, Khoruts A.
From stool transplants to next-generation microbiota therapeutics.
Gastroenterology. 2014;146(6):1573-1582. doi: 10.1053/j.gastro.2014.01.004
Deep dive: characterization of microbial community structure and function, sequencing and analytics, metabolomics, engraftment, signaling and feedback cascades, in vitro, in vivo, in situ studies
Rashidi A, Ebadi M, Rehman TU, et al.
Gut microbiota response to antibiotics is personalized and depends on baseline microbiota.
Microbiome. 2021;9(211). doi: 10.1186/s40168-021-01170-2
Staley C, Kaiser T, Vaughn BP, et al.
Durable long-term bacterial engraftment following encapsulated fecal microbiota transplantaion to treat Clostridium difficile Infection.
mBio. 2019;10(4) e01586-19. doi: 10.1128/mBio.01586-19
Jahansouz C, Staley C, Kizy S, et al.
Antibiotic-induced disruption of intestinal microbiota contributes to failure of vertical sleeve gastrectomy.
Annals of Surgery. 2019;269(6):1092-1100. doi: 10.1097/SLA.0000000000002729 (link to abstract only)
Dostal Webster A, Staley C, Hamilton MJ, et al.
Influence of short-term changes in dietary sulfur on the relative abundances of intestinal sulfate-reducing bacteria.
Gut Microbes. 2019;10(4):447-457. doi: 10.1080/19490976.2018.1559682
Smillie CS, Sauk J, Gevers D, et al.
Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation.
Cell Host & Microbe. 2018;23(2):229-240. doi: 10.1016/j.chom.2018.01.003
Luca F, Kupfer SS, Knights D, Khoruts A, Blekhman, R.
Functional genomics of host-microbiome interactions in humans.
Trends in Genetics. 2018;34(1):30-40. doi: 10.1016/j.tig.2017.10.001 (link to abstract only)
Staley C, Vaughn BP, Graiziger CT, et al.
Community dynamics drive punctuated engraftment of the fecal microbiome following transplantation using freeze-dried, encapsulated fecal microbiota.
Gut Microbes. 2017;8(3):276-288. doi: 10.1080/19490976.2017.1299310
Changes in colonic bile acid composition following fecal microbiota transplantion are suffficient to control Clostridium difficile germination and growth.
PLOS ONE. 2016. doi: 10.1371/journal.pone.0147210
Weingarden A, González A, Vázquez-Baeza Y, et al.
Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection.
Microbiome. 2015;3(10). doi: 10.1186/s40168-015-0070-0
Weingarden AR, Chen C, Bobr A, et al.
Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.
American Journal of Physiology – Gastrointestinal and Liver Physiology. 2014;306(4):G310-G319. doi: 10.1152/ajpgi.00282.2013
Shankar V, Hamilton MJ, Khoruts A, et al.
Species and genus level reslution analysis of gut microbiota in Clostridium difficile patients following fecal microbiota transplantation.
Microbiome. 2014;2(13). doi: 10.1186/2049-2618-2-13
Weingarden AR, Hamilton MJ, Sadowsky MJ, Khoruts A.
Resolution of severe Clostridium difficile infection following sequential fecal microbiota transplantation.
Journal of Clinical Gastroenterology. 2013;47(8):735-737. doi: 10.1097/MCG.0b013e31829004ae
Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ.
High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria.
Gut Microbes. 2013;4(2):125-35. doi: 10.4161/gmic.23571. Epub 2013 Jan 18.
Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ.
Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea.
Journal of Clinical Gastroenterology. 2010;44(5):354-60. doi: 10.1097/MCG.0b013e3181c87e02