Publications
Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ.
Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea.
Journal of Clinical Gastroenterology. 2010;44(5):354-60. doi: 10.1097/MCG.0b013e3181c87e02
Khoruts A, Sadowsky MJ.
Therapeutic transplantation of the distal gut microbiota.
Mucosal Immunology. 2011;4(1):4-7. doi: 10.1038/mi.2010.79. Epub 2010 Dec 8.
Bakken JS, Borody T, Brandt LJ, et al.
Treating Clostridium difficile infection with fecal microbiota transplantation.
Clinical Gastroenterology and Hepatology. 2011;9(12):1044-9. doi: 10.1016/j.cgh.2011.08.014. Epub 2011 Aug 24. Review.
Borody TJ, Khoruts A.
Fecal microbiota transplantation and emerging applications.
Nature Reviews Gastroenterology & Hepatology. 2012;9(2):88-96. doi: 10.1038/nrgastro.2011.244. Review.
Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A.
Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection.
The American Journal of Gastroenterology. 2012;107(5):761-7. doi: 10.1038/ajg.2011.482. Epub 2012 Jan 31.
Weingarden AR, Hamilton MJ, Sadowsky MJ, Khoruts A.
Resolution of severe Clostridium difficile infection following sequential fecal microbiota transplantation.
Journal of Clinical Gastroenterology. 2013;47(8):735-737. doi: 10.1097/MCG.0b013e31829004ae
Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ.
High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria.
Gut Microbes. 2013;4(2):125-35. doi: 10.4161/gmic.23571. Epub 2013 Jan 18.
Petrof EO, Khoruts A.
From stool transplants to next-generation microbiota therapeutics.
Gastroenterology. 2014;146(6):1573-1582. doi: 10.1053/j.gastro.2014.01.004
Kelly CR, Ihunnah C, Fischer M, et al.
Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients.
The American Journal of Gastroenterology. 2014;109(7):1065-71. doi: 10.1038/ajg.2014.133. Epub 2014 Jun 3.
Khoruts, A.
Faecal microbiota transplantation in 2013: developing human gut microbiota as a class of therapeutics.
Nature Reviews Gastroenterology & Hepatology. 2014;11(2):79-80. doi: 10.1038/nrgastro.2013.231. Epub 2013 Dec 3. Review.
Khoruts A, Weingarden AR.
Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology.
Immunology Letters. 2014;162(2):77-81. doi: 10.1016/j.imlet.2014.07.016. Review.
Weingarden AR, Chen C, Bobr A, et al.
Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.
American Journal of Physiology – Gastrointestinal and Liver Physiology. 2014;306(4):G310-G319. doi: 10.1152/ajpgi.00282.2013
Shankar V, Hamilton MJ, Khoruts A, et al.
Species and genus level reslution analysis of gut microbiota in Clostridium difficile patients following fecal microbiota transplantation.
Microbiome. 2014;2(13). doi: 10.1186/2049-2618-2-13
Weingarden A, González A, Vázquez-Baeza Y, et al.
Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection.
Microbiome. 2015;3(10). doi: 10.1186/s40168-015-0070-0
Kelly CR, Khoruts A, Staley C, et al.
Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection.
Annals of Internal Medicine. 2016;165(9):609-616. doi: 10.7326/M16-0271
Khoruts A, Rank KM, Newman KM, et al.
Inflammatory bowel disease affects the outcome of fecal microbiota transplantation for recurrent Clostridium difficile infection.
Clinical Gastroenterology and Hepatology. 2016;14(10):1433-1438. doi: 10.1016/j.cgh.2016.02.018
Changes in colonic bile acid composition following fecal microbiota transplantion are suffficient to control Clostridium difficile germination and growth.
PLOS ONE. 2016. doi: 10.1371/journal.pone.0147210
Staley C, Hamilton MJ, Vaughn BP, et al.
Successful resolution of recurrent Clostridium difficile infection using freeze-dried, encapsulated fecal microbiota; pragmatic cohort study.
The American Journal of Gastroenterology. 2017;112(6):940–947. doi: 10.1038/ajg.2017.6
Staley C, Khoruts A, Sadowsky MJ.
Contemporary applications of fecal microbiota transplantation to treat intestinal diseases in humans.
Archives of Medical Research. 2017;48(8):766-773. doi: 10.1016/j.arcmed.2017.11.006. Review. (link to abstract only)
Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease.
Microbiome. 2017;5(55). doi: 10.1186/s40168-017-0269-3
Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study.
Microbiome. 2017;5(10). doi: 10.1186/s40168-016-0225-7
Newman KM, Rank KM, Vaughn BP, Khoruts A.
Treatment of recurrent Clostridium difficile infection using fecal microbiota transplantation in patients with inflammatory bowel disease.
Gut Microbes. 2017;8(3): 303–309. doi: 10.1016/s0016-5085(17)31409-9
Staley C, Vaughn BP, Graiziger CT, et al.
Community dynamics drive punctuated engraftment of the fecal microbiome following transplantation using freeze-dried, encapsulated fecal microbiota.
Gut Microbes. 2017;8(3):276-288. doi: 10.1080/19490976.2017.1299310
Smillie CS, Sauk J, Gevers D, et al.
Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation.
Cell Host & Microbe. 2018;23(2):229-240. doi: 10.1016/j.chom.2018.01.003
Luca F, Kupfer SS, Knights D, Khoruts A, Blekhman, R.
Functional genomics of host-microbiome interactions in humans.
Trends in Genetics. 2018;34(1):30-40. doi: 10.1016/j.tig.2017.10.001 (link to abstract only)
A pilot study of fecal bile acid and microbiota profiles in inflammatory bowel disease and primary sclerosing cholangitis.
Clinical and Experimental Gastroenterology. 2019;12:9-19. doi: 10.2147/CEG.S186097
Microbiota transplant therapy and autism: lessons for the clinic.
Expert Review of Gastroenterology & Hepatology. 2019;13(11):1033-1037. doi: 10.1080/17474124.2019.1687293 (link to abstract only)
Can intestinal microbiota and circulating microbial products contribute to pulmonary arterial hypertension?
American Journal of Physiology: Heart and Circulatory Physiology. 2019;317(5):H1093-H1101. doi: 10.1152/ajpheart.00416.2019 (link to abstract only)
Dietary factors in sulfur metabolism and pathogenesis of ulcerative colitis.
Nutrients. 2019;11(4):931. doi: 10.3390/nu11040931
Fecal microbiota transplantation: current status in treatment of GI and liver disease.
Clinical Gastroenterology and Hepatology. 2019;17(2):353-361. doi: 10.1016/j.cgh.2018.07.026 (link to abstract only)
Khoruts A, Brandt LJ.
Fecal microbiota transplant: a rose by any other name.
The American Journal of Gastroenterology. 2019;114(7):1176. doi: 10.14309/ajg.0000000000000286
Khoruts A, Hoffmann DE, Palumbo FB.
The impact of regulatory policies on the future of fecal microbiota transplantation.
The Journal of Law, Medicine & Ethics. 2019;47(4):482-504. doi: 10.1177/1073110519897726 (link to abstract only)
Staley C, Kaiser T, Vaughn BP, et al.
Durable long-term bacterial engraftment following encapsulated fecal microbiota transplantaion to treat Clostridium difficile Infection.
mBio. 2019;10(4) e01586-19. doi: 10.1128/mBio.01586-19
Jahansouz C, Staley C, Kizy S, et al.
Antibiotic-induced disruption of intestinal microbiota contributes to failure of vertical sleeve gastrectomy.
Annals of Surgery. 2019;269(6):1092-1100. doi: 10.1097/SLA.0000000000002729 (link to abstract only)
Dostal Webster A, Staley C, Hamilton MJ, et al.
Influence of short-term changes in dietary sulfur on the relative abundances of intestinal sulfate-reducing bacteria.
Gut Microbes. 2019;10(4):447-457. doi: 10.1080/19490976.2018.1559682
Bajaj JS, Khoruts A.
Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis.
Journal of Hepatology. 2020;72(5):P1003-1027. doi: 10.1016/j.jhep.2020.01.017
Teigen L, Mathai PP, Matson M, et al.
Methanogen abundance thresholds capable of differentiating in vitro methane production in human stool samples.
Digestive Diseases and Sciences. 2020. doi: 10.1007/s10620-020-06721-5 (link to abstract only)
Rashidi A, Kaiser T, Graiziger C, et al.
Specific gut microbiota changes heralding bloodstream infection and neutropenic fever during intensive chemotherapy.
Leukemia. 2020;34(1):312-316. doi: 10.1038/s41375-019-0547-0 (no open access link available)
Khoruts A.
Can FMT Cause or Prevent CRC? Maybe, But There Is More to Consider.
Gastroenterology. 2021; ISSN 0016-5085. doi: 10.1053/j.gastro.2021.06.074.
Staley C, Halaweish H, Graiziger C, et al.
Lower endoscopic delivery of freeze-dried intestinal microbiota results in more rapid and efficient engraftment than oral administration.
Sci Rep. 2021 Feb 25;11(1):4519. doi: 10.1038/s41598-021-84152-6.
Khoruts A, Staley C, and Sadowsky MJ.
Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology.
Nat Rev Gastroenterol Hepatol. 2021;18:67-80. doi: 10.1038/s41575-020-0350-4. (link to abstract only)
Rashidi A, Ebadi M, Rehman TU, et al.
Gut microbiota response to antibiotics is personalized and depends on baseline microbiota.
Microbiome. 2021;9(211). doi: 10.1186/s40168-021-01170-2
Britton RA, Hoffmann DE, Khoruts A.
Probiotics and the Microbiome-How Can We Help Patients Make Sense of Probiotics?
Gastroenterology. 2021;160(2):614-623. doi: 10.1053/j.gastro.2020.11.047. (link to abstract only)